Notation and Definitions:

- $\operatorname{gcd}(a, b)$ means the greatest common divisor of the positive integers a and b.
- $\operatorname{lcm}(a, b)$ means the least common multiple of the positive integers a and b.
- If $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.
- $\varphi(n)$ is Euler's phi function, which is the number of positive integers less than or equal to n which are relatively prime to n.
- $a \equiv b(\bmod m)$ if $a-b$ is an integer multiple of m.
- $\lceil x\rceil$ denotes the "ceiling" of x, the smallest integer greater than or equal to x.
- $\lfloor x\rfloor$ denotes the "floor" of x, the greatest integer less than or equal to x.
- $\binom{a}{b}=\frac{a!}{b!(a-b)!}$ denotes the binomial coefficient.

Instructions: Write your answer on the indicated line of the answer sheet exactly as directed in each problem. Only the answer sheet will be graded.

1. List all positive divisors of 258 in increasing order.
2. How many positive divisors does $2^{4} \cdot 3^{7} \cdot 7^{3} \cdot 11^{2}$ have?
3. Please find $\operatorname{gcd}(360,244)$.
4. Please find $\operatorname{lcm}(36,40)$.
5. What is the exponent on 2 in the prime factorization of 720 ?
6. What is the exponent on 5 in the prime factorization of 800 ?
7. Suppose that a, b are positive integers and we know that $\operatorname{lcm}(a, b)=5580$ and $a \cdot b=11160$. Please find $\operatorname{gcd}(a, b)$.
8. Please find the 20th prime.

Questions 9-11 refer to the following definition of a, b :
Suppose that a, b have prime factorizations

$$
\begin{aligned}
a & =2^{5} \cdot 3^{7} \cdot 5^{9} \\
b & =2^{3} \cdot 3^{8} \cdot 11^{2}
\end{aligned}
$$

9. What is the exponent on 2 in the prime factorization of $\operatorname{gcd}(a, b)$?
10. What is the exponent on 3 in the prime factorization of $\operatorname{lcm}(a, b)$?
11. What is the exponent on 11 in the prime factorization of $\operatorname{lcm}(a, b)$?
12. What is the smallest possible positive value for c satisfying the equation below, assuming that x, y are arbitrary integers?

$$
14 x+21 y=c
$$

13. Please find $\operatorname{gcd}(129,473)$.
14. Which of the numbers below is divisible by 3 ? Write either " x ", " y ", or "none" on the answer sheet.

$$
\begin{aligned}
& x=12,342,343 \\
& y=342,428
\end{aligned}
$$

15. Which of the numbers below is divisible by 4 ? Write either " x ", " y ", or "none" on the answer sheet.

$$
\begin{aligned}
& x=498,234 \\
& y=423,424
\end{aligned}
$$

16. Please calculate $\lceil\sqrt{180}\rceil$.
17. Please calculate $\lfloor\sqrt{220}\rfloor$.
18. Please calculate $\varphi(35)$.
19. Please calculate $\varphi(43)$.
20. Please calculate $\varphi(64)$.
21. Please calculate $\binom{18}{4}$.
22. What is the coefficient of $a^{4} b$ in the simplified expansion of $(2 a-b)^{5}$?
23. Please calculate:

$$
\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}
$$

24. Please convert the base 2 (binary) number 1010111_{2} to base 10 .
25. Please convert the base 10 number 113 to base 5 .
26. What values of $x \in\{0,1,2,3,4,5,6\}$ satisfy $x+4 \equiv 3(\bmod 7)$?
27. What values of $x \in\{0,1,2,3, \ldots 9\}$ satisfy $x^{3} \equiv 4(\bmod 10)$?
28. Please calculate $3^{2023}(\bmod 5)($ answer as an integer $x, 0 \leq x \leq 4)$
29. Please calculate $80^{2023}(\bmod 9)($ answer as an integer $x, 0 \leq x \leq 8)$
30. Please calculate $131^{2023}(\bmod 11)$ (answer as an integer $\left.x, 0 \leq x \leq 10\right)$

Thank you for participating in the Pittsburg State Math Relays!

