Analysis
 PSU Math Relays 2023

- For each problem place your answer in the appropriate blank on the answer sheet provided.
- Simplify each answer as far as possible. Write numerical answers in exact form, such as fractions or radicals, rather than decimal approximations.
- You may not use a calculator on this test.

In problems 1-4 find the indicated limit.

1. $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}-1}$
2. $\lim _{x \rightarrow \infty} \frac{x+\ln x}{x}$
3. $\lim _{\theta \rightarrow \pi} \tan (\sin (\theta))$
4. $\lim _{x \rightarrow-1^{+}} f(x)$, where $f(x)= \begin{cases}2 x^{2}-x & \text { if } x \leq-1 \\ x^{2}+1 & \text { if } x>-1\end{cases}$

In problems 5-8 Let $f(x)=x+\frac{1}{x}$.
5. $f(-1)=$?
6. $f^{\prime}(-1)=$?
7. $f^{\prime \prime}(-1)=$?
8. $f^{(3)}(-1)=$?

In problems 9-12 find the indicated derivative.
9. $y=\sqrt{x^{2}-2 x+3}, \frac{d y}{d x}=$?
10. $f(x)=x^{2} e^{x}, f^{\prime}(x)=$?
11. $r=\frac{2+\sin \theta}{2-\cos \theta}, \frac{d r}{d \theta}=$?
12. $f(x)=\int_{1}^{-x} \sqrt{5+t^{2}} d t, f^{\prime}(x)=$?

In problems 13-16 let $f(x)=x^{3}-3 x^{2}-9 x+27$. Use the interval notation (a, b) to write intervals in your answers.
13. Find the interval(s) on which f is increasing.
14. Find the interval(s) on which f is decreasing.
15. Find the interval(s) on which f is concave up.
16. Find the interval(s) on which f is concave down.

In problems 17-19, determine whether the statement is true or false. The value c always refers to an interior point of the domain of function $f(x)$.
17. If $f^{\prime \prime}(c)>0$, then $f(c)$ is a local minimum.
18. If $f^{\prime}(c)=0$, then $f(x)$ has a local extreme value at $x=c$.
19. If $f(x)$ is differentiable and it has a local extreme value at c, then $f^{\prime}(c)=0$.

In problems 20-23 evaluate the indicated integral.
20. $\int_{0}^{4}(2 x+1)^{2 / 3} d x$
21. $\int_{0}^{2} \frac{2 x d x}{x^{2}+2}$
22. $\int t e^{-t^{2}} d t$
23. $\int_{0}^{\pi / 2} \sin (3 x) d x$
24. Find the slope-intercept form of the equation for the tangent line to the curve $y=$ $4-x^{2}$ at $x=-1$.
25. Use the definition of average value in terms of area to find the average value of the function $f(x)=\sin ^{2} x$ on the interval $[0, \pi]$.
26. Find the area of the finite region bounded by the curve $y=x^{2}-2 x-8$ and the line $y=2 x-3$.

