Multiple Choice: Select the letter of the most appropriate answer and shade in the corresponding region on the answer sheet.

1. Suppose $\sin \theta > 0$ and $\tan \theta > 0$. What quadrant must angle θ lie in?

A) I.

B) II.

C) III.

D) IV.

E) none

2. Which of the trigonometric functions below has period $\frac{2}{3}$? (x is in radians)

- **A)** $\sin(2\pi x 1)$
- **B)** $\sin(2x-3)$
 - C) $\sin(3\pi x 3)$
- **D)** $\sin(3x+1)$

E) none

3. Suppose $\cos \theta = \frac{2}{3}$, $\sin \theta = -\frac{3}{5}$. Find $\tan \theta$.

- A) $-\frac{9}{10}$ B) $-\frac{10}{9}$ C) $-\frac{2}{5}$
- **D**) $-\frac{5}{2}$

E) none

4. How many solutions are there to the equation $\sin 4x = 3$ for $0 \le x \le 2\pi$? (x is in radians)

A) 2

B) 4

C) 6

D) 8

E) none

5. If $\cos \theta = \frac{1}{5}$, then what must $\cos(2\theta)$ be?

- A) $-\frac{23}{25}$ B) $\frac{2}{5}$

- C) $-\frac{2}{5}$
- D) $\frac{23}{25}$

E) none

6. Evaluate $\cos^2 15^\circ - \sin^2 15^\circ$.

- **A**) $\frac{\sqrt{2}}{2}$
- B) $\frac{\sqrt{3}}{2}$
- **C**) $-\frac{\sqrt{2}}{2}$
- **D**) 1

E) none

7. Which of the following is an equivalent expression for tan x? (here x is an angle measured in radians)

- A) $\tan (\pi x)$ B) $\tan (\pi + x)$ C) $\tan \left(\frac{\pi}{2} + x\right)$ D) $\tan \left(\frac{\pi}{2} x\right)$

E) none

8. Supose $\cot \theta = \sqrt{8}$. Find $\csc \theta$, given that θ is a third quadrant angle.

A) -9

B) 9

C) 3

D) -3

Multiple Choice: Select the letter of the most appropriate answer and shade in the corresponding region on the answer sheet.

- **9.** Which of the trigonometric functions below has period $\frac{\pi}{4}$? (x is in radians)
- **A)** $\cos(4\pi x 1)$
- **B)** $\cos(8\pi x 3)$
- C) $\cos(4x 3)$
- **D)** $\cos(8x+1)$
- E) none

- **10.** Suppose $\cos \theta = -\frac{3}{5}$, $\sin \theta = -\frac{2}{5}$. Find $\cot \theta$.
- **A**) $-\frac{3}{2}$
- B) $\frac{3}{2}$ C) $\frac{2}{3}$
- **D**) $-\frac{2}{3}$
- E) none
- 11. How many solutions are there to the equation $\cos 4x = -\frac{1}{7}$? for $0 \le x \le 2\pi$ (x is in radians)
- **A)** 2

B) 4

C) 6

D) 8

E) none

- 12. Evaluate $2\sin\frac{\pi}{8}\cos\frac{\pi}{8}$.
- A) $\frac{\sqrt{2}}{2}$ B) $-\frac{\sqrt{2}}{2}$
- C) $\sqrt{2}$

- **D)** $-\sqrt{2}$
- E) none

- 13. Suppose $\sec \theta = -5$. Find $\tan \theta$, given that θ is a third quadrant angle.
- **A)** $-2\sqrt{6}$
- **B)** $2\sqrt{6}$
- **C**) $2\sqrt{3}$
- **D)** $-2\sqrt{3}$
- E) none

- 14. Evaluate tan 15°
- A) $\frac{\sqrt{2} \sqrt{6}}{4}$ B) $\frac{\sqrt{2} + \sqrt{6}}{4}$
- **C**) $2 \sqrt{3}$
- **D)** $2 + \sqrt{3}$
- E) none
- 15. Which of the following is an equivalent expression for tan x? (here x is an angle measured in radians)
- A) $\cot\left(\frac{\pi}{2}-x\right)$
- $\mathbf{B)} \cot \left(\frac{\pi}{2} + x\right)$
- C) $\cot(\pi + x)$
- **D)** $\cot (\pi x)$
- E) none

- **16.** Suppose $\cos \theta > 0$ and $\tan \theta < 0$. What quadrant must angle θ lie in?
- **A**) I.

B) II.

C) III.

D) IV.

Trigonometry - Team Event

2019 Math Relays

Multiple Choice: Select the letter of the most appropriate answer and shade in the corresponding region on the answer sheet.

17. Suppose $\cos \theta = -\frac{1}{3}$. Find $\sin \theta$, given that θ is a second quadrant angle.

A)
$$-\frac{2\sqrt{2}}{3}$$

$$\mathbf{B)}\;\frac{2\sqrt{2}}{3}$$

C)
$$\frac{\sqrt{3}}{2}$$

D)
$$-\frac{\sqrt{3}}{2}$$

E) none

18. Which of the following is an equivalent expression for $\cos x$? (here x is an angle measured in radians)

A)
$$\sin(\pi + x)$$

B)
$$\sin(\pi - x)$$

C)
$$\cos(4\pi + x)$$

D)
$$\cos(3\pi - x)$$

E) none

19. Which of the trigonometric functions below has period 2π ? (x is in radians)

$$\mathbf{A}$$
) $\tan x$

B)
$$\tan 2x$$

C)
$$\tan \frac{x}{2}$$

D)
$$\tan 2\pi x$$

E) none

20. How many solutions are there to the equation $\tan 2x = 5$ for $0 \le x \le 2\pi$? (x is in radians)

E) none

21. Suppose $\csc \theta > 0$ and $\sec \theta < 0$. What quadrant must angle θ lie in?

E) none

22. Suppose $\tan \theta = 3$, $\cos \theta = -\frac{1}{6}$. Find $\sin \theta$.

A)
$$-\frac{1}{2}$$

B)
$$\frac{1}{2}$$

D)
$$-2$$

E) none

23. Evaluate $\cos 105^{\circ}$

A)
$$\frac{\sqrt{2} - \sqrt{6}}{4}$$

A)
$$\frac{\sqrt{2} - \sqrt{6}}{4}$$
 B) $\frac{\sqrt{2} + \sqrt{6}}{4}$ C) $\frac{2 + \sqrt{3}}{4}$

C)
$$\frac{2+\sqrt{3}}{4}$$

D)
$$\frac{2-\sqrt{3}}{4}$$

E) none

24. Evaluate $\sin 101^{\circ} \cos 11^{\circ} - \cos 101^{\circ} \sin 11^{\circ}$

C)
$$-1$$

D)
$$\frac{1}{2}$$

Multiple Choice: Select the letter of the most appropriate answer and shade in the corresponding region on the answer sheet.

- **25.** Suppose $\cot \theta = -3$, $\cos \theta = -\frac{1}{9}$. Find $\sin \theta$.
- **A**) 27

- **B**) -27
- C) $\frac{1}{6}$

D) $\frac{1}{2}$

- E) none
- **26.** Which of the following is an equivalent expression for $\sin x$? (here x is an angle measured in radians)
- A) $\cos\left(\frac{\pi}{2} + x\right)$ B) $\cos\left(\frac{\pi}{2} x\right)$ C) $\sin(\pi + x)$ D) $\sin(\pi x)$

- E) none

- **27.** Suppose $\tan \theta > 0$ and $\cos \theta < 0$. What quadrant must angle θ lie in?
- **A**) I.

B) II.

C) III.

D) IV.

E) none

- **28.** Supose $\sin \theta = \frac{1}{2}$. Find $\cos \theta$, given that θ is a first quadrant angle.
- **A**) $\frac{\sqrt{3}}{2}$
- B) $-\frac{\sqrt{3}}{2}$ C) $\frac{1}{2}$

D) $-\frac{1}{2}$

E) none

- **29.** Which of the trigonometric functions below has period 3? (x is in radians)
- A) $\cot 3x$
- B) $\cot \frac{x}{3}$ C) $\cot \frac{3x}{\pi}$ D) $\cot \frac{\pi x}{3}$
- E) none
- **30.** How many solutions are there to the equation $\sec 2x = \frac{\sqrt{3}}{2}$ for $0 \le x \le 2\pi$? (x is in radians)
- **A**) 2

B) 4

C) 6

D) 8

E) none

- **31.** Evaluate sin 75°
- A) $\frac{\sqrt{2}-\sqrt{6}}{4}$ B) $\frac{\sqrt{2}+\sqrt{6}}{4}$
- C) $\frac{2+\sqrt{3}}{4}$
- D) $\frac{2-\sqrt{3}}{4}$
- E) none

- **32.** Evaluate $\frac{\tan 20^{\circ} \tan 65^{\circ}}{1 + \tan 20^{\circ} \tan 65^{\circ}}$
- **A**) 1

B) 0

C) -1

D) $\frac{1}{2}$