Marathon-2019

You may use a calculator. Do not write on the test below but only on the plain paper provided. Answers put on the form below will not be graded.

- 1. Find all of the roots of $x^3 10x^2 + 31x 30 = 0$.
- 2. Suppose L(0) = 1 and that, for n = 1, 2, 3, ..., L(n) = nL(n-1).
 - (a) Calculate L(1).
 - (b) Calculate L(2).
 - (c) Calculate L(7).

3. Suppose
$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

(a) Show that
$$\frac{1}{n+1} = A + \frac{A}{n+1} \cdot n$$

- (b) Find the value of A.
- (c) Find the value of B.

4.
$$S_n = \frac{1}{1 \cdot (1+1)} + \frac{1}{2 \cdot (2+1)} + \dots + \frac{1}{n \cdot (n+1)}$$

- (a) Calculate S_1 .
- (b) Calculate S_2 .
- (c) Calculate S_{1000} .
- 5. (a) Expand and simplify $(x + x_1)(x + x_2)$.
 - (b) Expand and simplify $(x + x_1)(x + x_2)(x + x_3)$.
 - (c) What is the coefficient of x^{n-1} in $(x+x_1)(x+x_2)(x+x_3)\dots(x+x_n)$? Don't be afraid to guess.
 - (d) What is the constant term in $(x + x_1)(x + x_2)(x + x_3) \dots (x + x_n)$? Don't be afraid to guess.
- 6. What is the constant term of $(x+1)(x+2)(x+3)\dots(x+n)$?
- 7. Prove that if x_1, x_2 , and x_3 are the roots of $x^3 + 2x + 30 = 0$, then $x_1 + x_2 + x_3 = 0$.