Marathon-2017

You may use a calculator. Do not write on the test below but only on the plain paper provided. Answers put on the form below will not be graded.

- 1. Let p(x) = 3 + 2(x 1) + 2(x 1)(x 2).
 - (a) Calculate p(1).
 - (b) Calculate p(2).
- 2. Let $L(x) = \frac{3}{2}(1-x) + \frac{5}{2}(x+1)$.
 - (a) Calculate L(-1).
 - (b) Calculate L(1).

3. Let
$$p(x) = 1 + (x - 1) + (x - 1)(x - 2) + (x - 1)(x - 2)(x - 3)$$
.

- (a) Calculate p(1).
- (b) Calculate p(2).
- (c) Calculate p(3).
- (d) Construct a function q(x) so that q(1) = 1, q(2) = 2, and q(3) = 3.

4. Let
$$L(x) = \frac{A}{b-a}(b-x) + \frac{B}{b-a}(x-a)$$
.

- (a) Calculate L(a).
- (b) Calculate L(b).
- (c) Construct a function L(x) so that $L(-\pi) = -1$ and $L(\pi) = 1$.

5. Let
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$
 for $n = 0, 1, 2, \dots$

- (a) Let N = 5 and $x_0 = 3$. Find x_1 .
- (b) Let N = 5 and $x_0 = 3$. Find x_2 .
- (c) Let N = 5 and $x_0 = 3$. Find x_3 .
- (d) Solve $L = \frac{1}{2} \left(L + \frac{N}{L} \right)$ for L in terms of N.
- (e) What is the value of $\lim_{n\to\infty} x_n$ where x_n is as defined originally?

$$\wedge 0$$

6. Define the binary operation \wedge by $\begin{array}{c|c} 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$. Given 4-bit binary numbers $x_4x_3x_2x_1$ and $y_4y_3y_2y_1$

define $x_4x_3x_2x_1 \wedge y_4y_3y_2y_1$ to be $z_4z_3z_2z_1$ where $z_i = x_i \wedge y_i$ for i = 1, 2, 3, 4.

- (a) Calculate $1100 \land 0110$.
- (b) Calculate $x_4 x_3 x_2 x_1 \wedge 0100$.
- 7. Given a binary number $x_4x_3x_2x_1$ define $x_4x_3x_2x_1 \ll 1$ to be equal to $x_3x_2x_10$.
 - (a) Calculate 1011 << 1.
 - (b) With \wedge as defined in an earlier problem, calculate $x_4x_3x_2x_1 \wedge (1 \ll 1)$.
 - (c) Defining $x_4x_3x_2x_1 \ll 2$ as $(x_4x_3x_2x_1 \ll 1) \ll 1$, calculate $x_4x_3x_2x_1 \wedge (10 \ll 2)$.