
2022 Kansas MAA Undergraduate Mathematics Competition

Instructions

• This is a team competition. You are permitted to work with the members of your team on the
following 10 problems. You are not permitted to ask for or receive any assistance from anyone
other than your team mates.

• Each team should submit at most one solution to each problem. Each solution should be
completed on a separate sheet of paper. Also, each solution page should have the problem
number AND the team number written on it (your team number will be communicated to you
by your coach). Please do not write your school name, the names of the team mates, or
any other identifying information on the solutions.

• The competition begins at 8 a.m. and you have until 11 a.m. to complete the problems. Once
finished, each team should place the problem sheet and each solution page (with the team
number and problem number written on it) into the exam envelope. Any scrap or extra paper
should be returned to the graders.

• Calculators are permitted. However, you must show all of your work for full credit.

• No cell phones, other electronic devices (apart from calculators), books, notes, or any other
outside help are permitted.

Problems

1. A derangement is a permutation with no fixed points. For example, given the 4 element
set {A,B,C,D}, (B,C,A,D) is not a derangement since D is fixed. Similarly, (A,C,D,B)

is not a derangement since A is fixed. However, (B,A,D,C) is a derangement. Given a
set of n elements, let d(n) denote the number of derangements of that set. Please prove,
for n > 2, the following recursive formula for d(n):

d(n) = (n− 1) · (d(n− 2) + d(n− 1)).

Solution

Consider an n-element set {1, 2, . . . , n}. Clearly, we have n− 1 choices for where to send
1 (namely, an element of {2, 3, . . . , n}). For simplicity, let’s say 1 is sent to 2. This is
without loss of generality since we could always reorder the elements of the range so
that 1 get sent to 2 under that ordering. Now either 2 gets sent to 1, or 2 gets sent to
a number in the range 3, . . . , n. If 2 gets sent to 1, we know that {3, . . . , n} must map to
{3, . . . , n} with no fixed points, of which there are

d(n− 2)

derangements. On the other hand, suppose 2 gets sent to a number in the range 3, . . . , n.
In this case, the problem reduces to counting fixed point free maps from {2, . . . , n} to
{1, . . . , n} \ {2} where 2 does not map to 1. Evidently, this is logically equivalent to
counting derangements of an n− 1 element set,

d(n− 1).

Recalling there were n− 1 choices for where to send 1, we infer that

d(n) = (n− 1) · (d(n− 2) + d(n− 1)).



2. A rectangular strip is divided into n bands of equal length, each of which is colored
with one of m colors. Two strips are considered identical if one is a left-to-right mir-
ror reflection of the other. Please determine how many distinct colorings there are of
said strips (your final answer should be a function in terms of m,n, possibly defined
piecewise depending on whether n is even or odd).

Solution

Either a coloring is invariant (unchanged) under reflection or it isn’t.

First we count the tillings that are unchanged under reflection. If n is even, a coloring
that is unchanged under reflection is completely determined by how the first n

2
tiles are

colored, so there are
m

n
2

colorings invariant under reflection (when n is even).

If n is odd, the first (n− 1)/2 tiles determine the last (n− 1)/2 tiles, with the middle tile
having full choice of the m colors. Thus, there are

m
n−1
2 ·m = m(n+1)/2

colorings invariant under reflection when n is odd.

There are mn total colorings. If n is even, there are

mn −m
n
2

colorings that are not invariant under reflection. We divide this by 2 to get the distinct
colorings, and then add back in those that are invariant under reflection,

1

2
(mn −m

n
2 ) +m

n
2 =

1

2

(
mn +m

n
2

)
A similar process applies if n is odd,

1

2
(mn −m(n+1)/2) +m(n+1)/2 =

1

2

(
mn +m

n+1
2

)
.

Therefore, we get the piecewise function

C(m,n) =


1
2

(
mn +m

n
2

)
, n is even.

1
2

(
mn +m

n+1
2

)
, n is odd.

3. Do there exist integers a, b, c, d so that the last 4 digits of

(a+ b)(b+ c)(c+ d)(d+ a)



are equal to 2022? Prove the existence of such 4 numbers, or prove that such 4 numbers
cannot exist.

Solution

No such integers can exist. Indeed, arguing by contradiction, suppose there were such
4 integers a, b, c, d. By divisibility tests, (a + b)(b + c)(c + d)(d + a) would be even, but not
divisible by 4 (since 22 is not divisible by 4).

But this means exactly one of a+ b, b+ c, c+d, d+a must be even, with the other 3 being
odd.

But then the sum of a+ b, b+ c, c+ d, d+ a must be odd, an evident contradiction since

a+ b+ b+ c+ c+ d+ d+ a = 2(a+ b+ c+ d),

is even.

4. Let n ∈ N. Let d1, d2, . . . , dk denote the list of positive divisors of n. For each divisor di, let
mi denote the number of positive divisors of di. Please prove that

(m1 +m2 + . . .+mk)
2 = m3

1 +m3
2 + . . .+m3

k.

Solution

Suppose the prime factorization of n has 3 distinct primes, n = p`11 · p`22 · p`33 .

Each triple (a1, a2, a3) with 0 ≤ ai ≤ `i corresponds to precisely one divisor of n, namely
the divisor

pa11 p
a2
2 p

a3
3 ,

and the total number of positive divisors of pa11 p
a2
2 p

a3
3 is given by

(a1 + 1)(a2 + 1)(a3 + 1).

Thus, if we sum over all such (a1 + 1)(a2 + 1)(a3 + 1), we get, using standard summation
formula the sum of the first n natural numbers,

m1 +m2 + · · ·mk =

a1+1∑
i=1

a2+1∑
j=1

a3+1∑
k=1

i · j · k

=

(
a1+1∑
i=1

i

)
·

(
a2+1∑
j=1

j

)
·

(
a3+1∑
k=1

k

)

=
(a1 + 1)(a1 + 2)

2
· (a2 + 1)(a2 + 2)

2
· (a3 + 1)(a3 + 2)

2
.

Therefore,

(m1 +m2 + · · ·mk)
2 =

(a1 + 1)2(a1 + 2)2

4
· (a2 + 1)2(a2 + 2)2

4
· (a3 + 1)2(a3 + 2)2

4
.



On the other hand, using the standard summation formula for the sum of cubes,

m3
1 +m3

2 + · · ·m3
k =

a1+1∑
i=1

a2+1∑
j=1

a3+1∑
k=1

(i · j · k)3

=

(
a1+1∑
i=1

i3

)
·

(
a2+1∑
j=1

j3

)
·

(
a3+1∑
k=1

k3

)

=
(a1 + 1)2(a1 + 2)2

4
· (a2 + 1)2(a2 + 2)2

4
· (a3 + 1)2(a3 + 2)2

4
.

Thus we see the desired equality. The general case is easily seen to follow from this,
where instead of three sums we get one for each prime appearing in the prime factor-
ization of n.

5. Show that ∫ π
2

0

sin2022 x

sin2022 x+ cos2022 x
dx =

π

4
.

Solution

Let x = π
2
− u, or u = π

2
− x. Then, since

sinx = sin
(π
2
− u
)
= cosu,

cosx = cos
(π
2
− u
)
= sinu,

dx = −du,

Subsituting, and changing the bounds of integration,

I =

∫ π
2

0

sin2022 x

sin2022 x+ cos2022 x
dx

= −
∫ 0

π/2

cos2022 u

cos2022 u+ sin2022 u
du

=

∫ π/2

0

cos2022 u

sin2022 u+ cos2022 u
du.

Therefore,

2I =

∫ π
2

0

sin2022 x

sin2022 x+ cos2022 x
dx+

∫ π/2

0

cos2022 u

sin2022 u+ cos2022 u
du

=

∫ π
2

0

sin2022 x

sin2022 x+ cos2022 x
dx+

∫ π/2

0

cos2022 x

sin2022 x+ cos2022 x
dx

=

∫ π
2

0

sin2022 x+ cos2022 x

sin2022 x+ cos2022 x
dx

=

∫ π
2

0

1 dx =
π

2
.

Therefore, the original integral I equals
π

4
.



6. Find the general solution to the differential equation

dy

dx
=
y

x
− 1

y
.

Solution

Multiplying both sides by y, we have

y
dy

dx
=
y2

x
− 1 ⇒ 1

2

d

dx

(
y2
)
=
y2

x
− 1.

This motivates us to set u = y2, which turns our equation into

1

2

du

dx
=
u

x
− 1 ⇒ du

dx
− 2

x
u = −2.

This is a first-order linear ODE which can be solved via the integrating factor method.
In particular, we have

d

dx

(
x−2u

)
= −2x−2 ⇒ x−2u = −2

∫
x−2dx = 2x−1 + C, C = const.

Therefore, u = y2 = 2x+ Cx2.

7. The nth degree polynomial p(x) is called reflexive if all of the following hold:

• p(x) is of the form xn − a1xn−1 + a2x
n−2 − . . .+ (−1)nan where n > 1;

• a1, a2, . . . , an are real;

• the n (not necessarily distinct) roots of p(x) are a1, a2, . . . , an.

(i) Find all reflexive polynomials of degree less than or equal to 3.

(ii) For any reflexive polynomial with n = 4, show that

2a2 = −a22 − a23 − a24.

Solution

(i) If n = 1, then p1(x) = x− a1 with a1 ∈ R. Note that p1(a1) = 0 as required.

If n = 2, then p2(x) = x2 − a1x + a2 with a1, a2 ∈ R. We need p2(a1) = p2(a2) = 0, which
implies the conditions

a21 − a1 · a1 + a2 = 0, a22 − a1 · a2 + a2 = 0 ⇒ a2 = 0.

Thus, for n = 2 the most general reflexive polynomial is p2(x) = x2 − a1x = x (x− a1) with
a1 ∈ R.

If n = 3, then p3(x) = x3 − a1x2 + a2x− a3 and, since the roots are a1, a2, a3, we must have

x3 − a1x2 + a2x− a3 = (x− a1)(x− a2)(x− a3).



As the right-hand side is equal to

x3 − (a1 + a2 + a3)x
2 + (a1a2 + a1a3 + a2a3)x− a1a2a3,

we must have (Vieta’s formulae)

a1a2a3 = a3, a1a2 + a1a3 + a2a3 = a2, a1 + a2 + a3 = a1.

Thus, we see that if a3 = 0 then a2 = 0. In that case,

p3(x) = x3 − a1x2 = x2(x− a1)

which is reflexive for all a1 ∈ R.

On the other hand, if a3 6= 0 then a1a2 = 1 and a2 + a3 = 0, hence

a2 =
1

a1
, a3 = −a2 = −

1

a1
.

In that case,

p3(x) = x3 − a1x2 +
1

a1
x+

1

a1

and we see that, in order to have p3(a1) = 0, we must have a1 = −1, which in turn implies
a2 = −1 and a3 = 1. Thus,

p3(x) = x3 + x2 − x− 1.

is another reflexive third-order polynomial.

(ii) If n = 4, then
p4(x) = x4 − a1x3 + a2x

2 − a3x+ a4.

From the root conditions, we have

x4 − a1x3 + a2x
2 − a3x+ a4 = (x− a1) (x− a2) (x− a3) (x− a4)

thus, expanding the right-hand side,

x4 − a1x3 + a2x
2 − a3x+ a4 =

[
x2 − (a1 + a2)x+ a1a2

] [
x2 − (a3 + a4)x+ a3a4

]
= x4 − (a1 + a2 + a3 + a4)x

3 + [a1a2 + a3a4 + (a1 + a2)(a3 + a4)]x
2

− [(a1 + a2)a3a4 + (a3 + a4)a1a2]x+ a1a2a3a4.

In particular, we must have

a2 + a3 + a4 = 0, a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4 = a2.

In fact, the first of these expressions leads to the simplification of the second one and
so

a2 + a3 + a4 = 0, a2a3 + a2a4 + a3a4 = a2.

Taking the square of the first equation yields the desired result in view of the second
equation.



8. The distinct points P (ap2, 2ap), Q(aq2, 2aq) and R(ar2, 2ar) lie on the parabola y2 = 4ax,
a > 0. The points are such that the normal to the parabola at Q and the normal to the
parabola at R both pass through P .

(i) Show that q2 + qp+ 2 = 0.

(ii) Show that QR passes through a certain point which is independent of the choice of
P , Q and R.

Solution

(i) Note that the tangent to any point of the parabola away from the origin has slope dy
dx

satisfying the equation

2y
dy

dx
= 4a ⇒ dy

dx
=

2a

y
.

By differentiating, we find that the normal to the parabola at Q has slope equal to

mQ = − 1
dy
dx

= − 1
2a
2aq

= −q.

But we also know that the normal at Q goes through P . Thus, its slope must equal

mQ =
yQ − yP
xQ − xP

=
2aq − 2ap

aq2 − ap2
=

2

p+ q
.

Hence, −q = 2
p+q

i.e. q2 + pq + 2 = 0 as desired.

(ii) The equation for QR is

y − yQ =
yR − yQ
xR − xQ

(x− xQ) ⇒ y − 2aq =
2ar − 2aq

ar2 − aq2
(x− aq2) ⇒ y − 2aq =

2

r + q
(x− aq2).

Rearranging gives
y(r + q)− 2a(rq + q2) = 2(x− aq2)

so using part (i) we find

y(r + q)− 2a(qr − 2− pq) = 2 (x+ apq + 2a) ⇒ y(r + q)− 2aqr = 2x.

Next, note that, similarly to (i), we have

mR =
2

p+ r
= −r ⇒ r2 + pr + 2 = 0.

which implies p = − r2+2
r
. But from (i) we have that p = − q2+2

q
. Hence,

−q
2 + 2

q
= −r

2 + 2

r
⇒ rq2 + 2r = qr2 + 2q ⇒ qr(q − r) = 2(q − r) ⇒ qr = 2.

Then, the equation for QR becomes

y(r + q)− 4a = 2x

and so we see that the point (−2a, 0) lies on QR and is independent of the choice of P ,
Q and R.



9. Given a sequence w0, w1, w2, . . ., the sequence F1, F2, . . . is defined by

Fn = w2
n + w2

n−1 − 4wnwn−1.

(i) Show that Fn − Fn−1 = (wn − wn−2)(wn + wn−2 − 4wn−1) for all n > 2.

(ii) The sequence u0, u1, u2, . . . is defined by u0 = 1, u1 = 2 and

un = 4un−1 − un−2, n > 2.

Prove that u2n + u2n−1 = 4unun−1 − 3 for all n > 1.

(iii) The sequence v0, v1, v2, . . . is defined by v0 = 1 and

v2n + v2n−1 = 4vnvn−1 − 3, n > 1.

Prove that, for each n > 2, either vn = 4vn−1 − vn−2 or vn = vn−2.

(iv) Give explicit examples of a sequence of period 2 and a sequence of period 4 that
satisfy (iii).

Solution

(i) We have

Fn − Fn−1 = w2
n + w2

n−1 − 4wnwn−1 − w2
n−1 − w2

n−2 + 4wn−1wn−2

= (wn − wn−2)(wn + wn−2)− 4wn−1(wn − wn−2)

= (wn − wn−2)(wn + wn−2 − 4wn−1).

(ii) From (i) with un assuming the role of wn, and using the fact that un−4un−1+un−2 = 0,
we have

Fn − Fn−1 = 0, n > 2.

But note that F1 = u21 + u20 − 4u1u0 = 22 + 12 − 4 · 2 · 1 = −3. Thus, Fn = −3 for all n > 2,
which corresponds to the desired result.

(iii) By the definition of vn, the corresponding sequence Fn satisfies

Fn = −3, n > 1.

Thus, from part (i) with vn in the role of wn we find

0 = (vn − vn−2)(vn + vn−2 − 4vn−1), n > 2,

which shows that either vn = vn−2 or vn = 4vn−1 − vn−2 as desired.

(iv) 1, 2, 1, 2, . . . and 1, 2, 7, 2, 1, 2, 7, 2, . . .

10. Solve the integral equation

f(t) = t+

∫ π

0

f(x) sin(x+ t)dx



for the continuous function f(t).

Solution

Since sin(a+ b) = sin a cos b+ cos a sin b, we have

f(t) = t+

(∫ π

0

f(x) sin(x)dx

)
cos(t) +

(∫ π

0

f(x) cos(x)dx

)
sin(t).

Hence, f has the form

f(t) = t+ A cos(t) +B sin(t), A,B = const.

Plugging this into the original equation for f , we find

t+ A cos(t) +B sin(t) = t+

∫ π

0

x sin(x+ t)dx

+ A

∫ π

0

cos(x) sin(x+ t)dx+B

∫ π

0

sin(x) sin(x+ t)dx.

We have ∫ π

0

x sin(x+ t)dx = −x cos(x+ t)
∣∣∣π
x=0

+

∫ π

0

cos(x+ t)dx

= −π cos(π + t) + sin(π + t)− sin(t)

= π cos(t)− 2 sin(t).

Moreover,∫ π

0

cos(x) sin(x+ t)dx =
1

2

∫ π

0

[sin(x+ x+ t)− sin(x− x− t)] dx

=
1

2

∫ π

0

[sin(2x+ t) + sin(t)] dx

=
1

2

[
−1

2
cos(2π + t) +

1

2
cos(t) + π sin(t)

]
=
π

2
sin(t).

Finally, ∫ π

0

sin(x) sin(x+ t)dx =
1

2

∫ π

0

[cos(x− x− t)− cos(x+ x+ t)] dx

=
1

2

∫ π

0

[cos(t)− cos(2x+ t)] dx =
π

2
cos(t).

Therefore, we obtain

t+ A cos(t) +B sin(t) = t+ π cos(t)− 2 sin(t) + A
π

2
sin(t) +B

π

2
cos(t).

Matching coefficients, we find

A = π +
π

2
B, B = −2 + π

2
A ⇒ A = 0, B = −2,

which implies
f(t) = t− 2 sin t.


