
2019 Kansas MAA Undergraduate Mathematics Competition

Instructions:

1. This is a team competition. You are permitted to work with the members of
your team on the following 10 problems. You are not permitted to ask for
or receive any assistance from anyone other than your team mates.

2. Each team should submit at most one solution to each problem. Each
solution should be completed on a separate sheet of paper. Also, each
solution page should the have problem number AND the teams number
written on it (your team number is located in the upper right hand corner
of this paper). Please do not write your school name, the names of the team
mates, or any other identifying information on the solutions.

3. You have until 11am to complete the exam. When you are finished with the
exam, each team should place the problem sheet and each solution page
(with the team number and problem number written on it) into the exam
envelope. Any scrap or extra paper should be returned to the graders.

4. Calculators are permitted. However, you must show all of your work for full
credit.

5. No cell phones or other electronic devices (other than calculators) are per-
mitted during the exam.

Problems:

1. Suppose a dresser with 15 drawers contains 104 coins. Prove or disprove:
there is a pair of drawers that contain the same number of coins (some
drawer could have no coins).

Solution: There must be such a pair of drawers. If each drawer had a
distinct amount of coins, the least amount of coins we could have would be
1 + 2 + . . .+ 14 = 105.

2. Suppose f(x, y) is a real-valed function with domain R2. Suppose the sum
of the function’s values taken over the vertices of any equilateral triangle is
0. That is, given any 3 points P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) ∈ R2 that
are the vertices of an equilateral triangle,

f(x1, y1) + f(x2, y2) + f(x3, y3) = 0.

Prove or disprove: f(x, y) = 0 for all (x, y) ∈ R2.

Solution: The function f must indeed be identically 0. It suffices to show
that the function is constant. Let P1, P2 be two arbitrary points of R2. Con-
struct a parallelogram with 2 60◦-angles, and 2 120◦-angles, so that P1, P2



are the two vertices at the 60◦ angles. Let P3, P4 be the remaining two ver-
tices. Because {P1, P3, P4} and {P2, P3, P4} both define equilateral triangles,
we infer

f(P1) + f(P3) + f(P4) = 0

f(P2) + f(P3) + f(P4) = 0.

Hence, f(P1) = f(P2), which implies f is constant as P1, P2 were arbitrary.
The only constant function satisfying the summation condition is clearly
the zero function.

3. Given an integer n ≥ 2, determine (with proof) whether or not the equation

sin(x) sin(2x) · · · sin(nx) = 1

has a real solution x ∈ R or not.

Solution: There exists no solution. Observe that if x solves the above then
we must have | sin(jx)| = 1 for all j = 1, 2, . . . , n. Since n ≥ 2, this means at
the very least that

| sin(x)| = 1 and | sin(2x)| = 1.

The first of these conditions requires that x = π
2
+ kπ for some integer k,

while the second requires that 2x = π
2
+mπ for some integer m. Eliminating

x implies that
π + 2kπ =

π

2
+mπ,

or, equivalently,

m− 2k =
1

2
.

which is impossible since m and k are integers. Therefore, no solution
exists.

4. Steven, Rachel, and Alexis take turns rolling a fair, 6-sided die. Steven
begins, Rachel follows Steven, Alexis follows Rachel, and this order repeats.
The game ends when a person rolls a 6, and this person is declared the
winner. Find the probability that Alexis wins. Your final answer should be
a fraction with numerator and denominator both integers!

Solution: The probability Alexis gets the first 6 in round 1 is

5

6
· 5
6
· 1
6
,

in round 2 is (
5

6

)5

· 1
6
,



and in generally in round k is (
5

6

)3k−1

· 1
6
.

So the desired probability is given by

∞∑
k=1

(
5

6

)3k−1

· 1
6
=

1

5

∞∑
k=1

(
5

6

)3k

=
1

5

∞∑
k=1

(
125

216

)k
=

1

5

(
1

1− 125
216

− 1

)
=

1

5

(
216

91
− 1

)
=

1

5

(
125

91

)
=

25

91

5. Define the sequence

an =
n∑
k=1

1

4k
.

Determine, with proof, whether the series
∑∞

n=1(an)
2n converges.

Solution For each n, an is the nth partial sum of a convergent geometric
series. In fact,

an ≤
1

1− 1
4

− 1 =
1

3

for all n. So, (an)2n ≤ 1
9n

and hence the given series converges by comparison
to the geometric series

∑∞
n=1

1
9n

.

6. Let A be the matrix

A =

cos 1 cos 2 cos 3
cos 4 cos 5 cos 6
cos 7 cos 8 cos 9

 ,
where all arguments of cos are in radians. Find, with proof, detA.

Solution: We claim detA = 0. Recall the sum to product identities:

cosx+ cos y = 2 cos

(
x+ y

2

)
cos

(
x− y
2

)



Thus,

cos 1 + cos 3 = 2 cos 2 cos 1

cos 4 + cos 6 = 2 cos 5 cos 1

cos 7 + cos 9 = 2 cos 8 cos 1.

Since the sum of the first and third column is a scalar multiple of the second
column, it follows that detA = 0.

7. Evaluate the integral ∫ ∞
1

bxc
x3

dx,

where bxc denote the greatest integer less than or equal to x. (Hint: You can
use, without proof, the fact that

∑∞
k=1

1
k2

= π2

6
).

Solution: Denoting the above integral by I, observe that

I =
∞∑
k=1

∫ k+1

k

k

x3
dx =

∞∑
k=1

∫ 1

0

k

(k + y)3
dy,

Using the FTC, we find

I = −1

2

∞∑
k=1

k

(k + y)2

∣∣∣1
y=0

= −1

2

∞∑
k=1

[
k

(k + 1)2
− 1

k

]
= −1

2

∞∑
k=1

[
k + 1

(k + 1)2
− 1

k
− 1

(k + 1)2

]
=

1

2

∞∑
k=1

(
1

k
− 1

k + 1

)
+

1

2

∞∑
k=1

1

(k + 1)2
.

The first series above telescopes, while the other can be evaluated with the
help of the given hint. We thus find

I =
1

2
+

1

2

(
π2

6
− 1

)
=
π2

12
.

8. For each positive integer n = 1, 2, 3, . . ., the nth Catalan number is defined as

Cn =
1

n+ 1

(
2n
n

)
.

Prove that Cn is a positive integer for each n.



Solution: By definition, we now that (n+ 1)Cn =

(
2n
n

)
. Similarly, we have

Cn =
1

n+ 1

(
2n
n

)
=

(2n)!

(n+ 1)!n!
=

1

n

(2n)!

(n+ 1)!(n− 1)!
=

1

n

(
2n
n− 1

)
so that, additionally, we have nCn =

(
2n
n− 1

)
. Subtracting these two re-

sults gives

Cn =

(
2n
n

)
−
(

2n
n− 1

)
.

This expresses Cn as the difference of two binomial coefficients, and hence
Cn is always an integer. Since we clearly have(

2n
n− 1

)
<

(
2n
n

)
for all n, it follows that Cn is additionally non-negative.

9. Given n ∈ N, let f(n) be the number of 1s in the binary expansion of n.
Evaluate the sum

∞∑
n=1

f(n)

n(n+ 1)
.

hint:
∞∑
n=1

(−1)n+1

n
= ln 2

Solution: Let S denote the sum of this series (absolutely convergent since
f(n) < 1 + log2(n)). One can see that f(2n) = f(n) and f(2n + 1) = f(n) + 1.
Using this, we split the series into even and odd parts

S =
∞∑
n=1

f(2n)

(2n)(2n+ 1)
+
∞∑
n=0

f(2n+ 1)

(2n+ 1)(2n+ 2)

=
∞∑
n=1

f(n)

(2n)(2n+ 1)
+
∞∑
n=0

f(n) + 1

(2n+ 1)(2n+ 2)

=
∞∑
n=0

1

(2n+ 1)(2n+ 2)
+
∞∑
n=1

(
f(n)

(2n)(2n+ 1)
+

f(n)

(2n+ 1)(2n+ 2)

)
=
∞∑
n=1

(−1)n+1

n
+
∞∑
n=1

f(n)

2n(n+ 1)

= ln 2 +
S

2
.

Since S = ln 2 + S
2
, we get S = ln 4.



10. Let A = {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, . . .} be the set of all dis-
tinct integers of the form nk, where n and k are both integers with n ≥ 2 and
k ≥ 2. (Note that integers such as 16 = 24 = 22 that have multiple represen-
tations as powers are counted only once in the set A.) Evaluate, with proof,
the infinite series ∑

a∈A

1

a− 1
.

Solution: Let B denote the set of all integers ≥ 2 that are not in A (the
requirement that elements of B are not in A handles the possible “double
counting" that is mentioned above). Then each element of A can be uniquely
written as a = bk where k ≥ 2 and b ∈ B. Thus,

∑
a∈A

1

a− 1
=
∑
b∈B

∞∑
k=2

1

bk − 1

=
∑
b∈B

∞∑
k=2

∞∑
h=1

1

bkh
,

where we have expressed 1
bk−1 as a geometric series. Now, switching the

order of integration (this is allowed since all terms are positive!) we find

∑
a∈A

1

a− 1
=
∑
b∈B

∞∑
h=1

∞∑
k=2

1

bkh

=
∑
b∈B

∞∑
h=1

(
1

bh − 1
− 1

bh

)
.

Now, by definition of the set B (the set of all positive integers ≥ 2 that are
not powers), the numbers bh with h ranging over all positive integers are
exactly the set of all integers n ≥ 2 where each n occurs exactly once as
n = bh. Thus, the above sum is the same as

∞∑
n=2

(
1

n− 1
− 1

n

)
,

which is telescoping series that sums to 1. Thus,∑
a∈A

1

a− 1
= 1.


