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1. Let A =
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]
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Solution: Simply observe that
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so that
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= n det
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= n det

(
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= −3n.

2. Two points P and Q are randomly selected in the interval [0, 2]. What is the
probability that P and Q are within a distance of 1/3 from each other, i.e.
determine

Prob

(
dist(P,Q) ≤ 1

3

)
.

Solution: In the square [0, 2]2, the area between the curves P = Q+ 1/3 and
P = Q − 1/3 is 4 − (5/3)2 = 11/9. Dividing by 4 gives the probability being
11/36.

3. Evaluate the integral∫ 4

0

(
x2 − 4x+ 7

)
sin
(
x3 − 6x2 + 12x− 8

)
dx.

Solution: By either recognizing that x3 − 6x2 + 12x− 8 = (x− 2)3 directly, or
coming to this conclusion by noting that x = 2 is the unique critical point
(and root), this motivates the change of variables y = x−2, which transforms
the integral into ∫ 2

−2

(
y2 + 3

)
sin(y3)dy.

The above integrand is odd and hence integrates to zero.

4. Suppose that f : R → R is a function such that f(f(x)) = x has exactly
2016 solutions. Show that f must have an even number of fixed points, i.e.
solutions of f(x) = x.

Solution: Note that if f(f(x)) = x, then setting y = f(x) we see that f(f(y)) =
y as well. Thus, there must be an even number of solutions of f(f(x)) = x
that are not themselves fixed points of x. Since 2016 is even, it follows that
f must have an even number of fixed points as well.



5. Suppose that f : R → R is an increasing function that is additive, i.e. f(x +
y) = f(x) + f(y) for all x, y ∈ R, and satisfies limx→∞ f(x) =∞. Prove that the
limit

lim
x→∞

[f(x)]

f([x])

exists, and determine its value. Here, [y] denotes the integer part of a given
y ∈ R. That is, [y] is the largest integer less than or equal to y.

Solution: By definition of [·] and the monotonicity of f , we have f(x) − 1 ≤
[f(x)] ≤ f(x) and f(x)− f(1) ≤ f([x]) ≤ f(x) so that

f(x)− 1

f(x)
≤ [f(x)]

f([x])
≤ f(x)

f(x)− f(1)

for all x ∈ R. By the squeeze theorem, it follows that the given limit exists
and equals 1.

6. A bicyclist completes a 12 mile ride in 60 minutes. Prove that there exists
a continuous 3-mile segment within this 12 miles that the rider completed
in exactly 15 minutes.

Solution: For each 0 ≤ x ≤ 9, let T (x) denote the amount of time it took the
rider to ride between x and x+3 miles. Clearly T (x) is continuous along the
course and

T (0) + T (3) + T (6) + T (9) = 60,

which clearly implies that not all of T (0), T (3), T (6), and T (9) can be less
than 15, and not all can be greater than 15. Thus, there exists integers m,n
with 0 ≤ m,n ≤ 9 such that

T (m) ≤ 15 ≤ T (n).

By the intermediate value theorem, it follows that there exists some time
t∗ ∈ [min(m,n),max(m,n)] such that T (t∗) = 15, as claimed.

7. Given some positive integer p ≥ 1, let 2p − 1 be a prime number and set
n = 2p−1(2p − 1). Show that the sum of all the the positive integer divisors of
n (not including n itself) is equal to 2n.

Solution: Set q = 2p − 1 and note that since q is prime the divisors of n,not
including n itself, are

1, 2, 22, . . . , 2p−1 and q, 2q, 22q, . . . , 2p−2q

Summing the first collection of divisors gives

1 + 2 + 22 + . . .+ 2p−1 =
2p − 1

2− 1
= 2p − 1 = q



while the sum of the other collection of divisors gives

q
(
1 + 2 + 22 + . . .+ 2p−2

)
= q

(
2p−1 − 1

2− 1

)
= 2p−1q − 1 = n− q.

Therefore, the sum of all such divisors is precisely

q + n− q = n,

as claimed.

8. Find all real solutions to the system
x3 + y3 + z3 = 0

x5 + y5 + z5 = 0

x7 + y7 + z7 = 0.

Solution: Clearly (x, y, z) = (0, 0, 0) works. If (x, y, z) ∈ R3 is a nontrivial
solution of the given system, then if follows that the vector (1, 1, 1) ∈ R3

is orthogonal to the three vectors (x3, y3, z3), (x5, y5, z5), and (x7, y7, z7), and
hence these latter three vectors must be linearly dependent, i.e.

0 = det

 x3 y3 z3

x5 y5 z5

x7 y7 z7

 = (xyz)3 det

 1 1 1
x2 y2 z2

x4 y4 z4


= −(xyz)3(x2 − y2)(x2 − z2)(y2 − z2).

It follows that either x2 = y2, x2 = z2, or else y2 = z2.

Now, notice that if any two of x, y, z are the same, then x = y = z = 0. Indeed,
if x = y, for example, then the first and second of the given equations imply
that z = 21/3x = 21/5x, and hence that x = 0. Furthermore, it is clear that if,
for example, x = −y, then z = 0. It follows that the solutions of the given
system are given by

{(a,−a, 0), (a, 0,−a), (0, a,−a) : a ∈ R} .

9. Suppose that P (x) is a polynomial with integer coefficients that takes the
value 1 at three distinct integers. Prove that P (x) can not have an integer
root.

Solution: Suppose that P (r) = 0 for some integer r, and let a be an integer
with P (a) = 1. Then clearly P (a) − P (r) = 1 and hence, since P has integer
coefficients, it follows that the integer a − r divides 1. But then a − r = ±1
which only gives two possibilities for the root a, not three. Thus, no such
polynomial can exist.



10. Let n ≥ 2 be a fixed integer and a > 0. Determine all functions f(x) that are
bounded on 0 < x < a and which satisfy the functional equation

f(x) =
1

n2

(
f
(x
n

)
+ f

(
x+ a

n

)
+ . . .+ f

(
x+ (n− 1)a

n

))
for all x ∈ (0, a).

Solution: First, since f is bounded there exists a M > 0 such that |f(x)| ≤M
for all x ∈ (0, a). Next, notice that for every k = 0, 1, 2, . . . (n − 1) and x ∈ (0, a)
we have

0 <
x+ ka

n
< a

and hence ∣∣∣∣f (x+ ka

n

)∣∣∣∣ ≤M

for every k = 0, 1, 2, . . . , n− 1. From the functional equation, it follows that

|f(x)| ≤ 1

n2
(K +K +K + . . .+K) ≤ K

n

for all x ∈ (0, a), effectively improving our upper bound by a factor of 1
n
. From

the functional equation again, we find

|f(x)| ≤ 1

n2

(
K

n
+

K

n
+

K

n
+ . . .+

K

n

)
≤ K

n2

for all x ∈ (0, a). Continuing in this way, we find that, for every j = 0, 1, 2, . . .
we have the uniform bound |f(x)| ≤ K

nj valid for all x ∈ (0, a). Taking j → ∞
implies that f(x) = 0 for all x.


