
2015 Kansas MAA Undergraduate Mathematics Competition: Solutions!

1. Show that the equation x2 + 2015x + 2016y3 = 3 has no integer solutions
x, y ∈ Z.

Solution: Given any integers x, y ∈ Z, it is clear that 2016y3 will be an even
integer. Further, if x is even then x2 + 2015x is the sum of two even integers,
and hence even, while if x is odd then x2 + 2015x is the sum of two odd
numbers, and hence also even. In any case, the sum x2 + 2015x+ 2016y3 will
be even for any x, y ∈ Z, and hence the given equation can have no integer
solutions.

2. Find the first digit (the ones digit) in the sum

1! + 2! + 3! + · · ·+ 2015!

Solution: Notice that the ones digit in the above sum is given by the sum
mod 10. Since n! = 0 mod 10 for all n ≥ 5, it follows that

1! + 2! + 3! + · · ·+ 2015! mod 10 = 1! + 2! + 3! + 4! mod 10 = 3.

Thus, the ones digit of the above sum is 3.

3. Determine whether there exists an infinite sequence (an) of positive real
numbers such that the series

∞∑
n=1

a1 + a2 + . . .+ an
n

converges.

Solution: Since all of the an are positive, it follows that, for each n ∈ N,

a1 + a2 + . . .+ an
n

≥ a1
n

and hence the series diverges by the comparison test.

4. Let f(x) be a strictly positive continuous function. Evaluate the integral∫ 4

0

f(x)

f(x) + f(4− x)
dx.

Solution: Letting I denote the value of the above integral, we have

I =

∫ 4

0

f(x) + f(4− x)− f(4− x)

f(x) + f(4− x)
dx = 4−

∫ 4

0

f(4− x)

f(x) + f(4− x)
dx.



Making the substitution y = 4− x we find∫ 4

0

f(4− x)

f(x) + f(4− x)
dx = −

∫ 0

4

f(y)

f(4− y) + f(y)
dy = I

so that, combining with the previous identity, we find

I = 4− I ⇒ I = 2.

5. Suppose that f, g : N → N, f is onto, g is one-to-one, and f(n) ≥ g(n) for all
n ∈ N. Prove that f(n) = g(n) for all n ∈ N.

Solution 1: Since f is onto, there exists a n1 ∈ N such that f(n1) = 1. Since
g(n1) ≤ f(n1) and g(n1) ∈ N, it follows that g(n1) = 1 = f(n1) Furthermore,
since g is one-to-one, it follows that n1 is the unique natural number with
this property. Similarly, since f is onto there exists an n2 ∈ N such that
f(n2) = 2. Since g(n2) ≤ f(n2) it follows that g(n2) ∈ {1, 2}. Using that g is one-
to-one, it follows that g(n2) 6= 1 (since n1 6= n2) and hence that g(n2) = 2. Thus,
g(n2) = f(n2) = 2 and, again by the fact that g is one-to-one, n2 is the unique
natural number with this property. Continuing by induction, it follows that,
for each k ∈ N there exists a unique nk ∈ N such that f(nk) = g(nk) = k.

It now remains to show that {nk}∞k=1 = N, but this is clear since if m ∈
N \ {nk}∞k=1 then g(m) ∈ N and hence, by above, there exists a unique k ∈ N
such that g(nk) = f(nk) = g(m). Since g is one-to-one, it follows that m = nk

and hence that {nk}∞k=1 = N, as claimed. Together then, it follows that
f(n) = g(n) for every n ∈ N.

Solution 2: By contradiction. Assume there exists m0 ∈ N with g(m0) <
f(m0). Since f is onto, there exists m1 ∈ N with f(m1) = g(m0). Since g is
one-to-one, and g(m0) = f(m1), g(m1) < f(m1) = g(m0).

Now assume that there exists positive integers m0, m1, . . .mk with g(mk) <
g(mk−1) < · · · < g(m0). Since f is onto, there exists mk+1 ∈ N with f(mk+1) =
g(mk). Since g is one-to-one, g(mk+1) < f(mk+1) = g(mk).

By induction, we obtain a sequence of positive integers {mk} with the prop-
erty that {g(mk)} is a strictly decreasing sequence. Since {g(mk)} ⊂ N, this
is a contradiction.

6. For each n ∈ N, show that

n∑
k=0

n−k∑
i=0

(
n
k

)(
n− k

i

)
3k+i = 7n.



Solution: First, rewrite the sum as

n∑
k=0

(
n
k

)
3k

n−k∑
i=0

(
n− k

i

)
3i.

By the binomial theorem, we know

n−k∑
i=0

(
n− k

i

)
3i = (1 + 3)n−k = 4n−k

and hence, using the binomial theorem again, the given sum is equal to

n∑
k=0

(
n
k

)
3k4n−k = (4 + 3)n = 7n,

as claimed.

7. Let f : [0, 1] → R be an integrable function (not necessarily continuous).
Prove that if f(t) ≤ 2 for all t ∈ [0, 1] then there exists a unique solution
x ∈ [0, 1] of the equation

3x− 1 =

∫ x

0

f(t)dt.

Solution: Define the function g : [0, 1]→ R by g(x) = 3x− 1−
∫ x

0
f(t)dt. Since

f is integrable, it follows by the fundamental theorem of calculus that g is
continuous on [0, 1]. Now, notice that g(0) = −1 and that

g(1) = 2−
∫ 1

0

f(t)dt ≥ 2−
∫ 1

0

2 dt = 0.

If g(1) = 0, then x = 1 is a solution to the equation. If g(1) > 0, by the
intermediate value theorem, we have that there exists some c ∈ (0, 1) such
that g(c) = 0. To see that the solution is unique, we claim that g is a strictly
increasing function on [0, 1]. Indeed, given any a, b ∈ [0, 1] with a < b we have

g(b)− g(a) = 3(b− a)−
∫ b

a

f(t)dt ≥ 3(b− a)−
∫ b

a

2 dt = b− a > 0.

Thus, g is strictly increasing on [0, 1] and hence c is unique, as claimed.

8. Suppose f : [0,∞) → R is a continuous, non-negative function. Suppose

that f(x + 1) = (1/2)f(x) for all x ≥ 0, and
∫ 1

0

f(x) dx = 100. Show that the

integral
∫ ∞
0

f(x) dx exists and find its value.



Solution: First, we claim that the given improper integral converges. In-
deed, note that since f is non-negative it follows that the function g : R →
[0,∞) given by

g(t) =

∫ t

0

f(x)dx

is a non-decreasing function and, furthermore, given any t ≥ 1 we have
implies

g(t) ≤
∫ dte
0

f(x)dt =

dte∑
n=0

∫ 1

0

f(x+ n)dx

=

dte∑
n=0

(1/2)n
∫ 1

0

f(x)dx ≤ 100
∞∑
n=0

(1/2)n = 200.

Thus, g is a monotone non-decreasing function that is bounded above. It
follows that limt→∞ g(t) exists, which proves the given improper integral con-
verges, as claimed.

Now, to evaluate the integral, it sufficies to calculate the limit limt→∞ g(t).
Since we know the limit exist, we can take the limit along the natural num-
bers. To this end, for each n ∈ N notice that

g(n) =
n∑

k=0

∫ 1

0

f(x+ k)dx =
n∑

k=0

(1/2)k
∫ 1

0

f(x)dx = 100
n∑

k=0

(1/2)k

and hence that

lim
n→∞

g(n) = 100
∞∑
k=0

(1/2)k = 200.

It follows that ∫ ∞
0

f(x)dx = 200.

9. Determine, with proof, all polynomials satisfying satisfying P (0) = 0 and
P (x2 + 1) = (P (x))2 + 1 for all x.

Solution: We claim the only polynomial satisfying the given properties is
P (x) = x. To see this, first notice that the condition P (0) = 0 implies

P (02 + 1) = P (0)2 + 1 = 1.

so that P (1) = 1. Similarly, we find

P (12 + 1) = P (1)2 + 1 = 12 + 1

P ((12 + 1)2 + 1) = P (12 + 1)2 + 1 = (12 + 1)2 + 1.



By induction, it follows that if we define the recursive sequence

a1 = 1, an+1 = a2n + 1 for all n ∈ N

then P (an) = an for all n ∈ N. Furthermore, the sequence {an}∞n=1 is strictly
increasing since for all n ∈ N we have

an+1 − an = a2n + 1− an = (an − 1/2)2 + 3/4 > 0.

It follows that the function G(x) = P (x) − x is a polynomial with infinitely
many distinct real roots. Since a non-trivial polynomial of degree m can
have at most m real roots by the fundamental theorem of algebra, it follows
that G(x) = 0 for all x ∈ R, i.e. P (x) = x for all x ∈ R, as claimed.

10. Suppose that you have a 2n × 2n grid with a single 1 × 1 square removed.
Prove that the remaining squares can be tiled with L-shaped tiles consist-
ing of three 1×1 tiles - that is, a 2×2 tile with a single 1×1 square removed.

Solution: We prove this by induction on n. Clearly, this is possible if n = 1,
since a 2 × 2 grid with exactly one square removed is precisely the shape
of a given L-shaped tile. Now, suppose that, for some given n ∈ N it is
known that that this is possible for any given 2n × 2n grid with exactly one
square removed can be covered by such L-shaped tiles. Consider then a
2n+1× 2n+1 grid and notice this can be decomposed into a 4 2n× 2n sub-grids
in a unique way. Furthermore, we can consider the middle 2 × 2 sub-grid
of the 2n+1 × 2n+1 grid made up of exactly one square from each of the four
2n × 2n sub-grids. Since there is exactly one square missing from the given
2n+1 × 2n+1 grid, it follows that exactly one of these 2n × 2n sub-grids has
exactly one square missing (by hypothesis) and hence can be tiled by such
L-shaped tiles by the induction hypothesis. After covering this 2n × 2n sub-
grid, it follows that the center 2×2 grid has exactly one square missing, and
hence can be tiled with exactly one L-shaped tile. The remaining 3 2n × 2n

sub-grids now each have exactly one square covered, and hence can each
be tiled by the given L-shaped tiles by the induction hypothesis. Thus, the
given 2n+1 × 2n+1 grid can be tiled by such L-shaped tiles. The proof is thus
complete by mathematical induction.


