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1. Suppose that x1, x2, x3 are the roots of x3 + 2x + 2023 = 0. Please prove or
disprove: x1 + x2 + x3 = 0.

Solution:
We know that the polynomial in question must factor as (x − x1)(x − x2)(x − x3).
Expanding this, and equating the squared terms forces x1 + x2 + x3 = 0.

2. Let x, y be chosen uniformly and independently from the interval [0, 2]. Let

A =

x x 0
x x+ x2 + y x2

0 x2 x2


Please find the probability that 1 < det(A) < 2.

Solution:
The sample space for (x, y) is the square [0, 2] × [0, 2], which has area 4. Direct
calculation shows that det(A) = x3y. We need to find the area between the curves
y = 1

x3
and y = 2

x3
, or, equivalently, x = y−

1
3 and x = (y/2)−

1
3 . We calculate∫ 1

2−1/3

2− x−3 dx+
∫ 2

1

2x−3 − x−3 dx =
23

8
− 3 · 22/3

2

Dividing by 4 yields the probability:

23

32
− 3 · 22/3

8
≈ .123 = 12.3%.

3. Consider a 3-by-7 chessboard where the squares have been randomly colored
black or white. Please prove that any such coloring must contain a rectangle
(formed by the horizontal and vertical lines of the board such as the one outlined
in the figure) whose four distinct unit corner squares are all of the same color.

Solution:
For the purposes of this problem, call a column black if it has more black squares
than white squares, and white if it has more white squares than black squares.



Because there are 7 columns, there are either at least 4 black columns, or at
least 4 white columns. Without loss of generality, suppose there are 4 black
columns. Assume that each of these columns has a single white square. Now
there are only 3 locations in each column for the white square - this leaves at
least 2 columns with the white square in the same position. This means those
columns are identically colored, thus giving the result. The case where one of
the 4 columns is all black squares is covered by this case as well.

4. Let A,B,C,D denote 4 points in Euclidean space Rn. Let AB denote the
distance between A and B, and so on. Please prove that

AC2 +BD2 + AD2 +BC2 ≥ AB2 + CD2

and determine precisely when equality occurs.

Solution: Let a, b, c, d denote vectors from the origin to A,B,C,D, respectively.
Recalling that the dot product of a vector with itself gives the square of its mag-
nitude, the inequality in question reduces to

(a− c)2 + (b− d)2 + (a− d)2 + (b− c)2 ≥ (a− b)2 + (c− d)2,

which is equivalent to the following true statement after some simplification

(a+ b− c− d)2 = (a+ b− c− d) · (a+ b− c− d) ≥ 0.

We will have equality precisely when a+ b− c− d = 0. That is, a+ b = c+ d, so that
the 4 points form 4 vertices of a parallelogram.

5. Please determine all integer solutions to

a2 + b2 + c2 = a2b2.

Solution:
By reducing mod 4, it is easy to see that all of a, b, c must be even. Note that for
any even integer n, n2 = 0 mod 4, whereas if n is odd, n2 = 1 mod 4. Therefore, if
all of a, b, c are odd, the left hand side reduces to 3 mod 4, while the right hand
side reduces to 1 mod 4. If exactly two of a, b, c are odd, the LHS reduces to 2,
while the RHS reduces to either 1 or 0. If exactly one of a, b, c are odd, the LHS
reduces to 1, while the RHS reduces to 0. So the only possible solutions can
occur when a, b, c are all even.

Let a = 2a2, b = 2b2, c = 2c2. Substituting, we get 4a22 + 4b22 + 4c22 = 16a22b
2
2, or

a22 + b22 + c22 = 4a22b
2
2.

Now the RHS reduces to 0 mod 4. There are three terms on the LHS, each
reducing to 0 or 1 mod 4. This forces them all to be 0 mod 4. Therefore, a2, b2, c2



are all even. Writing a2 = 2a3, b2 = 2b3, c2 = 2c3 and substituting into the preceding
equation yields

a23 + b23 + c23 = 16a23b
2
3.

Again, we can conclude by reducing mod 4 that a3, b3, c3 are all even. By repeating
this process, we see that an arbitrarily large power of 2 divides each of a, b, c. This
forces a = b = c = 0.

6. Prove that eπ > πe.

Solution: Prove that the function f(x) = ln(x)/x, x ∈ (−∞,∞), has an absolute
maximum at x = e. Then, use this fact to show that f(π) < f(e), from which the
desired inequality follows: ln(π)/π < 1/e implies π < eπ/e and so πe < eπ.

7. Consider an isosceles right triangle with perpendicular sides of fixed length
a. Inscribe a rectangle and a circle inside the triangle as indicated in the figure
below. Find the dimensions of the rectangle (and the radius of the circle) which
make the total area of the rectangle and circle a maximum.

fig2.pdf

Solution: Denote the horizontal side of the rectangle by x and the radius of the
circle by r. Then, due to the triangle being right and isosceles, the vertical side
of the rectangle is equal to (a− x). Moreover, drawing the rays from the center of
the circle to the points of contact with the sides of the isosceles right triangle of
side a, as well as the line from the center to the down left vertex of that triangle,
we see that the area of the isosceles right triangle of side (a−x) can be expressed
as the sum of the areas of the four right triangles formed inside and also the
rectangle of side r. Hence, as these four triangles are equal to each other, we
have

4 · 1
2
r(a−x−r)+r2 = 1

2
(a−x)2 ⇒ r2−2(a−x)r+ 1

2
(a−x)2 = 0 ⇒ r =

(
2±
√
2
)
(a− x)

2

and, since r < a − x, it follows that r =

(
2−
√
2
)
(a− x)

2
=

a− x
2 +
√
2
. Thus, we need

to minimize the function

f(x) = π
(a− x)2

(2 +
√
2)2

+ x(a− x), 0 ≤ x ≤ a.



Differentiating gives

f ′(x) = 2π
x− a

(2 +
√
2)2

+ a− 2x = 2
( π

(2 +
√
2)2︸ ︷︷ ︸

A

−1
)
(x− a)− a

thus f ′(x) = 0 when x− a =
a

2(A− 1)
i.e. x =

(2A− 1)a

2(A− 1)
. Since

f(
(2A− 1)a

2(A− 1)
) = A(a− x)2 + x(a− x) = Aa2

4(A− 1)2
− (2A− 1)a

2(A− 1)
· a

2(A− 1)
=

a2

4(1− A)
,

comparing this value with the endpoint values f(a) = 0 and f(0) = Aa2 we con-

clude that the desired area is maximized at x =
(2A− 1)a

2(A− 1)
. This readily implies

the corresponding value for the radius r.

8. Let the sequence {an} be defined recursively by

a1 = 0, a2 = 1, an = (n− 1) (an−1 + an−2) , n ≥ 3.

Find an explicit formula for an and compute the limit lim
n→∞

an
n!

.

Solution: Rearranging the recursion relation, we have an−nan−1 = − [an−1 − (n− 1)an−2].
Proceeding this way, we eventually get an−nan−1 = (−1)n−2(a2−2a1) = (−1)n. Thus,

an
n!
− an−1

(n− 1)!
=

(−1)n

n!

and so
n∑
j=2

(
aj
j!
− aj−1

(j − 1)!

)
=

n∑
j=2

(−1)j

j!
=

n∑
j=0

(−1)j

j!
.

The sum on the left-hand side is telescoping and equal to
an
n!

. Thus,

an = n!
n∑
j=0

(−1)j

j!
⇒ lim

n→∞

an
n!

=
∞∑
j=0

(−1)j

j!
=

1

e
.

9. Let A be a square matrix and suppose that there exists positive integers m
and n such that Am = I and An 6= I. Calculate det (I + A+ A2 + . . .+ Am−1).

Solution: Starting from the identity (I + A+ . . .+ Am−1) (I − A) = I−Am and using
the hypothesis, we have (

I + A+ . . .+ Am−1
)
(I − A)x = 0



for any vector x. Then, since A 6= I (otherwise we would have Aj = I for all j ∈ N
contradicting the hypothesis), there exists vector x such that y := (I − A)x 6= 0.
But then y is an eigenvector of (I + A+ . . .+ Am−1) with eigenvalue zero, which
means that det (I + A+ . . .+ Am−1) = 0.

10. Consider the curve y =
1

1 + x2
, x ≥ 0.

(i) Show that there exists a straight line intersecting the curve at (0, 1) and tan-
gent to the curve at some point with x > 0 but with no further intersections
between the line and the curve.

(ii) By considering the area under the curve for 0 ≤ x ≤ 1, show that π > 3.

(iii) By considering the volume formed by rotating the portion of the curve corre-

sponding to 0 ≤ x ≤ 1 about the y-axis, show also that ln 2 >
2

3
.

Solution: (i) Since y′(x) = − 2x
(1+x2)2

, the tangent to the curve at (p, q) is y = −2pq2x+
(q + 2pq2p). In order for this tangent line to go through (0, 1), we must have
1 = q+2pq2p which through the equation of the curve implies p4 = p2. Since x ≥ 0,
we deduce p = 1 and so the tangent line is y = −1

2
x + 1. We can then check that

the equation −1
2
x+ 1 = 1

1+x2
has no solutions other than x = 0 and x = 1 (double),

and thus there is no further intersection between the tangent line and the curve.

(ii) Sketching the curve and its tangent found in part (i), we see that the area
under the tangent and above [0, 1] is less than the area under the curve and
above [0, 1]. The first of these areas is equal to 3/4, while the second one is
calculated as ∫ 1

0

1

1 + x2
dx =

π

4
.

Thus, 3/4 < π/4 which implies π > 3.

(iii) The volume formed by rotating the curve about the y-axis is given by∫ 1

0

2πx · ydx = π

∫ 1

0

2x

1 + x2
dx = π ln 2.

This is greater than the volume formed by rotating the tangent line about the
y-axis, which is equal to∫ 1

0

2πx · ydx = π

∫ 1

0

x (−x+ 2) dx =
2π

3
.

Thus, 2π/3 < π ln 2 implying that ln 2 > 2/3.


