Instructor: Angelyn Hobson
Email: ahobson@pittstate.edu
Office: Yates Hall 305; (620) 235-4392
Office Hours: See below.
Course Title: PHYS 166-01: Introduction to Meteorology
Term: Fall 2018
Meeting Times and Locations: TR 9:30-10:45, Yates 215
Textbook: Meteorology Today, C. Donald Ahrens and Robert Henson, 11th Ed., Cengage

COURSE DESCRIPTION AND PREREQUISITES

Catalog Description: A descriptive survey of atmospheric science integrating the concepts of weather patterns, climate, atmospheric composition and structure, pressure, wind, and impact of pollution. PHYS 167 is a corequisite. The lecture class is required to take the lab.

This course is also intended for partial fulfillment of the Pitt State Pathway Curriculum.

Pitt State Pathway Mission Statement: The Pitt State Pathway curriculum serves as the heart of the university education by fostering interdisciplinary competencies that typify the educated person. It is designed to facilitate the development of key proficiencies including communication and information literacy. The Pitt State Pathway curriculum provides a transformational experience that challenges students to think creatively and critically, and to immerse themselves in the productive examination of humans in their global setting. By encouraging the development of skills that promote life-long learning, the Pitt State Pathway fosters a sense of personal responsibility, an appreciation of diversity, and an understanding of interconnectedness in our truly global society.

Essential Study to be covered in this course: Natural World within a Global Context
Biological, physical, and chemical systems form the context for life. Students need to understand how these systems work, how these change naturally, and how these can change as a result of human activities. The implications of these changes are essential for long-term decision-making. In this course we will:
- Analyze physical and chemical systems;
- Evaluate the implications of changes that result from interactions between natural and human systems.

Companion Element to be covered in this course: Scientific Inquiry
The scientific method is the systematic approach to understanding the world around us. Through experimentation and hypothesis testing, students will apply analytical skills and appropriate methods of scientific inquiry (i.e. qualitative and quantitative) to solve a variety of research questions. In this course we will:
- Compose appropriate research questions and hypothesis, drawing from experts, reliable sources, or previously collected data.
- Collect, synthesize, and analyze data from multiple sources;
Draw logical conclusions, assessing for gaps and weaknesses, and addressing potential consequences and implications. Communicate results using appropriate delivery methods or formats.

The **Learning Outcome** for Natural World in a Global Context is:

Students will explore global systems conscientiously.

The **Learning Outcome** for Scientific Inquiry is:

Students will analyze data logically.

Course Objectives:

Natural World within the Global Context: Level of Student Learning = Milestone I
Explains physical and chemical processes and human activities that alter them.

Scientific Inquiry: Level of Student Learning = Milestone I
Student will apply the scientific methods to a problem.

Upon completion of this course, students should be able to:

- Discuss the physics and forces controlling atmospheric motion and various weather phenomena
- Analyze meteorological charts, such as surface data, radar, and satellite
- Explain the mechanisms behind cloud development and precipitation
- Summarize common features of severe and hazardous weather
- Discuss human impacts on climate and identify potential climate change scenarios

Methods of Assessment:
To assess the chosen level of student learning for Natural World within a Global Context (Milestone I), students will complete homework and exams to describe and explain biological, physical, and/or chemical processes and how human activities alter them. To assess the chosen level of student learning for Scientific Inquiry (Milestone I), students will complete homework and exams to identify and apply a problem by using scientific methods. Homework and exam dates are listed below. The final exam will be comprehensive.

Grades
Grades will be based on three unit exams, homework, and the final. Some material over which you will be tested might not be discussed in class, but will be based upon material in the textbook. Students are encouraged to begin homework assignments prior to due date so that they may seek assistance from me if needed. Please notify me in advance if you are going to be absent for an exam so we can schedule a make-up time for you. Final grades will follow this scale based on the percentage of total points earned: >90 % A; 75 - 89% B; 60 - 74% C; 50 - 59% D.

Grades will be determined from the following:
Homework: 30%
Tests: 50% (3 exams)
Final: 20% (1 exam)
Class Participation: up to 5% extra credit

Academic Integrity
All work submitted for a grade MUST be your own original work. *Plagiarism of any type will NOT be tolerated.* You are welcome to use online resources and/or discussions with other students to help you understand concepts and material better, but your answer should be in your own words and not copied from any source. If you are consulting outside sources (a website, book, etc.) to help with your answer, that source should be provided.

Whenever an outside source is directly quoted, the quote MUST be marked by quotation marks or italics and its source properly acknowledged. For more information refer to the PSU Code of Student Rights and Responsibilities: Article 30, Academic Misconduct at http://catalog.pittstate.edu/contentm/blueprints/blueprint_display.php?bp_listing_id=162&blueprint_id=124&sid=1&menu_id=7980

Course Outline
I reserve the right to modify course topics and the presentation as needed. We will not have time for in-depth lectures on every topic. Consequently, you are expected to read the assigned chapters of the textbook (or other materials) before class.

Tentative Dates

Reading by Chapter Earth and Atmospheric Properties

August 21 Syllabus, Introduction, 1. Earth and its Atmosphere
August 23 1. Earth and its Atmosphere (continued)
August 28 2. Energy: Warming the Earth and the Atmosphere
August 30 3. Seasonal and Daily Temperatures

HW 1 due on Canvas at 11:55pm

September 4 4. Atmospheric Humidity
September 6 5. Condensation: Dew, Fog, and Clouds
September 11 Complete material and review for exam

HW 2 due on Canvas at 11:55pm

September 13 – Exam 1

Tentative Dates

Readings by Chapter Clouds, Precipitation, and Global Patterns

September 18 6. Stability and Cloud Development
September 20 6. Stability and Cloud Development (continued)
September 25 7. Precipitation
September 27 8. Air Pressure and Winds

HW 3 due on Canvas at 11:55pm

October 2 9. Winds: Small Scale and Local
October 4 10. Wind: Global Systems
October 9 10. Wind: Global Systems (continued)

Fall Break

October 11 Complete material and review for exam
Oct 18 – Exam 2

Tentative Dates Readings by Chapter Storms, Climate, and Severe Weather
Oct 23 11. Air Masses & Fronts
Oct 25 12. Middle-Latitude Cyclones
Oct 30 12. Middle-Latitude Cyclones (continued)
Nov 1 13. Climate
Nov 6 13 Climate (continued)
Nov 8 14. Radar and Thunderstorms: Part I
HW 4 due on Canvas at 11:55pm
Nov 13 15. Radar and Thunderstorms: Part I (continued)

Nov 15 – Exam 3

Tentative Dates Readings by Chapter Meteorology Applications
Nov 20 15. Thunderstorms: Part II and Tornadoes
Nov 21-23 Thanksgiving Break
Nov 27 15. Thunderstorms: Part II and Tornadoes (continued)
Nov 29 16. Hurricanes
HW 5 due on Canvas at 11:55pm
Dec 4 18. Light, Color, and Optics
Dec 6 Review for final
Dec 10-14 Final Exam Week

Please review the following syllabus supplement:

Minimum Technology Requirement:

Canvas is required. Please click the link to a Canvas help page:

https://www.pittstate.edu/it/information-technology-services/canvas.html

Any technical difficulties, please contact Gorilla Geeks at

https://www.pittstate.edu/it/gorilla-geeks.html