
College :

Course #:

Faculty Senate Course Form

Submission Date:

Purpose/Justification for the Changes :

Is this related to, and/or affect, any other department/college/unit curricula or programs at Pittsburg State
University?

Is this course to be considered for General Education?
If "yes" this requirement will need approval of the Committee after the revisions have been
approved by Faculty Senate. he Course Approval form will also need to be submitted.

Will this course be required of any education majors?
I

Will additional resources or costs be required?

If so, what will be needed?

PSU Fac lty Senate 2 -2

Effective Date:

Department:

Contact Person:

 New, , or Reactivate

The need for an course to introduce students to the basic architecture of chips/processors and of
programming chips/processors.

Mathematics and Physics

Bobby Winters

CS 235New

Arts & Sciences

Fall 2026 9/5/2025

New/Proposed

Grading System:

Pre/Co-Requisite(s):

Course Description:

Course Numbers cannot be changed, only created.

Title:

Course Number:

Credits:

Exsisting

Objectives/Student Learning Outcomes for NEW courses only, as it will appear in the syllabus:
Attach with upload.

Assessment Strategies (e.g. exams, projects, university rubric, etc.), as it will appear in the syllabus:
Attach with upload.

PSU Fac lty Senate 2 -2

Will any additional course fees be required (e.g. equipment, clothing, travel, licensing, etc.)?
If "yes," complete the Course Fee Form on the website, it will need to gain approval of
the President's Council.

CS 235

3

Pre-requisite CS-200 Computer Programming 1
or DSIS-230 Introduction to Programming

The course is to be taught at an introductory
level. The course will introduce the student to
the basics of the architecture of a particular chip
or processor. The student will learn to program
the chip or processor at a very basic level. The
student will be taught about binary and
hexadecimal numbers. The course assumes that
the student is comfortable working with a
computer.

Select One A-F, IN

Date:

Date:

Date:

Date:

Date:

Date:

PSU Fac lty Senate 2 -2

Signature, Recorder Faculty Senate:

-Approved: Department Chair

-Approved: College Curriculum Committee

Signature, Chai :

Signature, Committee Chair:

-Approved: Dean of College
Signature, Dean:

-Approved: Council for Teacher Education (if applicable)
Signature, Council Chair:

-Approved: University Undergraduate Curriculum Committee

Authorization Sign-Of

hecklist

Required fields completed.
Syllabus attached for new courses
Assignment Strategies Attached

Signature, Committee Chair:

-Approved: Faculty Senate

9/5/25

✔

✔

✔

10/7/25

10/7/25

CS 235 Introduction to Low-Level Programming

Student Learning Outcomes

1. Working with an appropriate Integrated Development Environment.
2. Basic chip/processor architecture, e.g. general purpose registers, special registers,

arithmetic-logic processing unit, data bus, etc.
3. Working with basic operations in assembly language to:

a. Move bytes from one general purpose register to another.
b. Move bytes between general purpose registers and RAM using pointers.
c. Move bytes from program memory to general purpose registers using

pointers.
4. Working with basic arithmetic operations in assembly language for:

a. Addition
b. Subtraction
c. Multiplication
d. Comparison

5. Introduction to branching operations such as
a. Jump
b. Various conditional branches
c. The calling of subroutines

6. Working with various quasi-peripheral devices such as but not limited to:
a. Shift-Registers
b. Analog to Digital Converters

7. Introduction to good practices in organizing code such as:
a. Creation of Modular Code
b. Eschewing of “Magic Numbers”

Assessment Strategies for Introduction to
Low-Level Programming

1. Quizzes for concepts and vocabulary. This will be used to assess knowledge of
architectural concepts, knowledge of hexadecimal numbers, etc.

2. Written assignments to document code. This will be done to test the understanding
of the functioning of code.

3. Modifying code examples to achieve a new purpose. This will further test the
understanding of the functioning of code.

4. Creation of macros in order to learn abstraction. This tests the ability to abstract
from particular examples.

5. Team class projects in programming. This tests the ability to integrate knowledge of
the material.

	CS 235 course form 25-26
	Student Learning Outcomes for Low-Level Programming Syllabus
	CS 235 Assessment Strategies

