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CS 235 Introduction to Low-Level Programming 
 
Student Learning Outcomes 

1. Working with an appropriate Integrated Development Environment. 
2. Basic chip/processor architecture, e.g. general purpose registers, special registers, 

arithmetic-logic processing unit, data bus, etc. 
3. Working with basic operations in assembly language to: 

a. Move bytes from one general purpose register to another. 
b. Move bytes between general purpose registers and RAM using pointers. 
c. Move bytes from program memory to general purpose registers using 

pointers. 
4. Working with basic arithmetic operations in assembly language for: 

a. Addition 
b. Subtraction 
c. Multiplication 
d. Comparison 

5. Introduction to branching operations such as 
a. Jump 
b. Various conditional branches 
c. The calling of subroutines 

6. Working with various quasi-peripheral devices such as but not limited to: 
a. Shift-Registers 
b. Analog to Digital Converters 

7. Introduction to good practices in organizing code such as: 
a. Creation of Modular Code 
b. Eschewing of “Magic Numbers” 



Assessment Strategies for Introduction to 
Low-Level Programming 

1. Quizzes for concepts and vocabulary. This will be used to assess knowledge of 
architectural concepts, knowledge of hexadecimal numbers, etc. 

2. Written assignments to document code. This will be done to test the understanding 
of the functioning of code. 

3. Modifying code examples to achieve a new purpose. This will further test the 
understanding of the functioning of code. 

4. Creation of macros in order to learn abstraction. This tests the ability to abstract 
from particular examples. 

5. Team class projects in programming.  This tests the ability to integrate knowledge of 
the material. 
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