2016-2017 SAE Baja Design/Manufacturing Project

Hani Alnakhly(MECET, Design Emphasis)Mohnannad Gazzaz(MECET, Design Emphasis)Azmi Awari(MECET, Design Emphasis)Turki Al-Rashid(MECET, Design Emphasis)Sultan Alshammari(MECET, Design Emphasis)Abraham Ittycheri(MECET, Electromechanical Emphasis)

Introduction to SAE (Society of Automotive Engineers) Baja Competition~2017

- Four day long competition (May 25th to 28th)
- Hosted by Pittsburg State University
- Multidepartment project (MECET, Automotive Technology)

Components of the Event

- Inspection
- Dynamic Event
- Endurance Test
- Design Finals

Problem Statement

- Car that can function pass SAE inspection
- Strategic car that perform well during the competition
- Meet the budget requirement

Material For The Tubing

Material: ASTM A36 Steel

Yield Strength: Min. 36,000 psi Tensile Strength: 58,000 – 80,000 psi

The reason behind using this material?

Frame

Consideration for manufacturing phase:

• SAE Guideline

• Design compatibility

Manufacture Tools

CHOP SAW

STEEL BURR

BURR REMOVAL

Manufacturing Tools

BURR REMOVAL AND SCUFFING

MILLING MACHINE

Manufacturing Tools

WELDING MACHINE

Manufacturing Tools

TUPING COPING

WATER JET

Frame Length, Height, and Width

Objective	Outcome
Maximum of 108 inches in length	91 inches
Height is based on the driver	60 inches
Maximum of 64 inches in width	59 inches

Frame Height and Width

Frame Length:

SAE Baja Suspension

Overview

Definition

Suspension is the term given to the system of shock absorbers and linkages that connects between a vehicle and its wheels.

- Purpose:
 - to keep the wheel in contact with the road surface as much as possible
 - to protect the vehicle itself from damage
 - to keep the driver as isolated possible from bumps and vibrations

Front Suspension

• Objectives

Objective	Outcomes
8 inches' suspension travel (minimum)	✓ Complete
No more than 64-inch distance between front wheels (maximum)	✓ Complete
15 inches' front clearance (maximum)	✓ Complete
Compatible dimensions for A-arms design	✓ Complete
Design and fabricate new suspension system	✓ Complete

Front Suspension

- Design phase of the front suspension
 - A-arm suspension
 - Mounting tabs or brackets
 - Nylon solid stock inserts
 - Steel heim joint inserts
 - Knuckle spacer
- Material:
 - ASTM A36 Steel Pipes
 - Nylon

Lower A-arm on SolidWorks

Lower A-arm

Upper A-arm on SolidWorks

Lower A-arm

- a) Suspension travel is almost 9 inches (8 inches min.)
- b) Distance between front wheel is 59 inches (64 inches max.)
- c) Front suspension clearance is 15 inches (max.)

Nylon solid stock inserts on SolidWorks

Steel heim joint inserts on SolidWorks

Steel insert

Mounting tabs or brackets (water jet)

Three Links Arms:

- Purpose?
- What is the goals?

• How to link it to the frame?

The angle shape at the middle of the frame will be Used to link the trailing arm.

• Manufacture process:

Purchase Parts:

- 2off road Tires
- 2 Knuckles
- 2 Shafts
- 2 Fox Racing shocks
- 2 Hubs
- 10 Heim joints

Heim joints

Knuckle

Manufacture process:

Parts made in the shop:

- 2 Trailing Arms(24")
 (ASTM A36 Steel)
- 4 Shock mount Brackets (ASTM A36 Steel)
- 4 Support arms (17") (ASTM A36 Steel)
- 10 Heim inserts
 (ASTM A36 Steel)

Shock mount Bracket

Trailing arm

- Purpose
 - To control the direction of the vehicle direction by turning the front wheels.

- Component Parts
 - Steering Wheel Handel

• Steering Shafts

• Rack and pinion & steering boot

• Heim Joints

• Heim Joints

- The Safety in the steering system
 - Good component quality.
 - Wheel alignment.
 - 1- To make the directions of the car more accurate.
 - 2- Avoiding the losing the control of the car.

• Wheel alignment.

Adjusting the angle of the Wheels.

Toe out

Toe in

• Manufacture

DRILL SIZE	DECIMAL EQUIVALENT	TAP SIZE
$\frac{27}{64}$ $\frac{27}{7}$.4130 .4219 .4375	¹ /2 - 13
<u>29</u> <u>16</u> 64 <u>15</u> 31_32	.4531 .4688	¹ /2 - 20
	4844	9/16 - 12

• Drawing

• Manufacture

Powertrain: Design & Manufacturing Process

- Strategic (Torque vs Speed)
- Availability of products
- Cost

Powertrain Dynamic Test: Torque Requirements 1

• Uphill Climb

Fo = Force needed to be overcome

- W = Weight(x and y components included)
- Ff = Frictional Force
- Fo = Wy + Ff
- Torque = Fo * Radius of the wheel

Powertrain Dynamics Test: Torque Requirements 2

- Load carrying capacity test
- Functional requirement: **Overcome static friction**
- Fo = Force needed to be overcome to put the car in motion
- W = Weight (Car + Driver)
- CL = Carried Load
- Ff: Frictional force
- Ff = Friction Coefficient * Total Load
- Fo > Ff
- Torque = Fo * Radius of the Wheel

Dynamic Test : Inclined Plane Uphill Climb

INTERNATIONAL»

Dynamic Test: Load Carrying Capacity on a Flat Plane

Engine Speed (RPM)	Driving Pulley Diameter (in)	Driven Pulley Diameter (in)	Transaxle Input	Transaxle Output	Tire Diameter (in)	Efficency	Torque (HP)
1315.00 7.00 3.00		1.00	10.50	20.00	0.65	10.50	
		•	Transax	le Ratio			
	2.3333	333333	0.095238095				

Driveshaft	Engine Output
RPM	Torque (ft*lbs)
292.222222	
2	440.3292776

Ground Speed (Rear Tires) **11.3017**

Manufacturing Process

- 1. Assembly (assembling the purchased parts together)
- 2. Fabrication (Safety cover)

Purchased parts:

- Engine
- Differential
- CVT Pulleys
- Transmission belt

Engine: Briggs & Stratton 10 HP OHV Intek, Model 19

Input shaft for the differential, prior to the attaching the CVT driven pulley

Output shaft for the engine, prior to attaching the CVT drive Pulley

CVT Assembly

Fabricated Part: Safety Cover

Drivetrain Speed Expectations Vs Manufacturing Outcome

Values	Expected Value	Actual Output
Overall Efficiency	80%	65%
Ground Speed	35	32

Engine Speed (RPM)	Driving Pulley Diameter (in)	Driven Pulley Diameter (in)	Transaxle Input	Transaxle Output	Tire Diameter (in)	Efficency	Torque (HP)
3800.00	7.00	3.00	1.00	10.50	20.00	0.65	10.50
	•	,	Transax	le Ratio			
	2.3333	33333	0.0952	238095			

DriveshaftEngine OutputRPMTorque (ft*lbs)844.4444444444152.3771053

Ground

Speed

(Rear

Tires)

Drawing:

Created By Hani Alnakhly

Machines Used to make Fuel Box:

Water Jet Cutter

Created By Hani Alnakhly

Safety: Design Requirement

1- Brake Light:Type: Polaris #2411450

2- Reverse Light:Type: Backup light J759

Safety: Design Requirement

3- Kill Switches:

Type: Stock Polaris #4013381.

2 Kill Switches.

External Switch Mount.

4- Belt Restraint:

Metal to Metal Buckle (50 in). Safety Harness at least (5 point). Lab Belt and Shoulder Belt.

Front Kill switch

5- Helmet & Head Restrain: Driver helmet (6 in) clearance. Shoulder, Knee, Hips, Arms Elbow, Hands (3 in) clearance.

Head clearance for the driver

6- Fire Extinguisher:Quick Release.Mount on the cockpit Labeled.

Fire

extinguisher

Other Safety Features:

- 7- Steering Wheel able to replace easily.
- 8- All wiring must be sealed.

Sealed wires

9- Batteries mounted with sound engineering, and able to provide power to brake light etc.

Battery

Created By Hani Alnakhly

20)17 Baja SA	E Official C	osting s	Sheet		Gorill	a Racing					
YOU NU	MUST ENTER YOUR CAR MBER FOR EACH EVENT.		CAL	KAN	ILL		Enter Team Name		Name i	n		
Enter numbers only (ie: 2,6,13,24) If you are NOT entering the event leave blank		Car Number		113				Call F2				
		Total Cost		\$14,146.34				Cell F	5			
*					Vehicle /	Assembly						
t			Subassem	ubly Costs	Lat	oor	Sub	total			Judges	
မီ	ltem	Description	Material	Labor	Time(min)	Cost	Material	Labor	Cost Adj. Form	Adjustment	Adjusted Cost	
1	Engine		\$831.27	\$65.20		\$0.00	\$831.27	\$65.20			\$896.47	
2	Transmission		\$2,617.77	\$108.65		\$0.00	\$2,617.77	\$108.65			\$2,726.42	
3	Drive Train		\$1,073.92	\$14.58		\$0.00	\$1,073.92	\$14.58			\$1,088.50	
4	Steering		\$471.14	\$112.52		\$0.00	\$471.14	\$112.52			\$583.66	
5	Suspension		\$2,504.84	\$356.20		\$0.00	\$2,504.84	\$356.20			\$2,861.04	
6	Frame		\$743.30	\$826.61	$\geq \leq$	$\geq <$	\$743.30	\$826.61			\$1,569.91	
7	Body		\$161.21	\$171.72		\$0.00	\$161.21	\$171.72			\$332.93	
8	Brakes		\$1,738.72	\$54.15		\$0.00	\$1,738.72	\$54.15			\$1,792.87	
9	Safety Equipment		\$165.00	\$8.75		\$0.00	\$165.00	\$8.75			\$173.75	
10	Electrical Equipment		\$311.06	\$20.42		\$0.00	\$311.06	\$20.42			\$331.48	
11	Fasteners		\$134.54	$\geq \leq$		\$0.00	\$134.54	\$0.00			\$134.54	
12	Miscellaneous		\$727.56	\$122.50		\$0.00	\$727.56	\$122.50			\$850.06	
13	CAL Event		\$0.00	\$0.00		\$0.00	\$0.00	\$0.00			\$0.00	
14	KAN Event		\$798.88	\$5.83		\$0.00	\$798.88	\$5.83			\$804.71	
15	ILL Event		\$0.00	\$0.00		\$0.00	\$0.00	\$0.00			\$0.00	
		CAL Total:	\$11,480.33	\$ 1,861.29		\$-	\$ 11,480.33	\$ 1,861.29			\$13,341.63	
		KAN Total:	\$12,279.21	\$ 1,867.13	0	\$-	\$ 12,279.21	\$ 1,867.13			\$14,146.34	
		ILL Total:	\$11,480.33	\$ 1,861.29		\$-	\$ 11,480.33	\$ 1,861.29			\$13,341.63	

Conclusion

- How can we improve it better for next year?
- Causes for unmet expectations
- Better analysis

Short Video

